Astrophysics

Improving Electron Thermodynamics in GRMHD Simulations of Black Hole Accretion

Completed Technology Project (2016 - 2017)

Project Introduction

The goal of this project remains to improve the electron thermodynamic calculations in General Relativistic Magnetohydrodynamics (GRMHD) simulations of low accretion rate systems to allow for more predictive modeling of astrophysical systems. We have successfully implemented a model in 3D GRMHD simulations that separately evolves an electron entropy equation, including the effects of electron heating and anisotropic electron thermal conduction along magnetic field lines. I am in the the later stages of using these simulations to compare to observations of the supermassive black hole at the galactic center, Sagittarius A*, and have found that our model can naturally produce most features of the spectral energy distribution with only a limited number of free parameters. In collaboration with Ben Ryan of UIUC, I am improving this model to include the effects of radiative cooling, scattering, and absorption on both the electrons and total fluid. This for the first time allows for self-consistent comparison of simulations to observations of systems with higher accretion rates than Sqr A* where radiative cooling is more efficient. Future work will apply this scheme to observations of the supermassive black hole in M87 and certain X-ray binary systems. Additional future work will focus on adding the effects of electron-ion Coulomb collisions on the electron entropy equation and improving the semi-analytic calculations of our closure model for electron heating.

Primary U.S. Work Locations and Key Partners

Improving Electron
Thermodynamics in GRMHD
Simulations of Black Hole
Accretion

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Management	2
Technology Areas	2
Target Destination	2

Organizational Responsibility

Responsible Mission Directorate:

Science Mission Directorate (SMD)

Responsible Program:

Astrophysics

Astrophysics

Improving Electron Thermodynamics in GRMHD Simulations of Black Hole Accretion

Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
Regents of the	Supporting	Academia	Oakland,
University of California	Organization		California

Primary	U.S.	Work	Locations
---------	------	------	-----------

California

Project Management

Program Manager:

Joe Hill-kittle

Principal Investigator:

Eliot Quataert

Co-Investigators:

Sean M Ressler David M Weldon

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing

Target Destination

Outside the Solar System

